Part Number Hot Search : 
RF3223 SS13E 1N493 CP310 PM200 AP40N03S 5231B C1608C0G
Product Description
Full Text Search
 

To Download XCM519AB02DR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 XCM519 Series
GENERAL DESCRIPTION
ETR2421-003
600mA Synchronous Step-Down DC/DC Converter + Low Voltage Input LDO
The XCM519 series is a multi combination module IC which comprises of a 600mA driver transistor built-in synchronous step-down DC/DC converter and a low voltage input LDO regulator. The device is housed in small USP-12B01 package which is ideally suited for space conscious applications. Battery operated portable products require high efficiency so that a dual DC/DC converter is often used. The XCM519 can replace this dual DC/DC to eliminate one inductor and reduce output noise. The DC/DC converter and the LDO regulator blocks are isolated in the package so that noise interference from the DC/DC to the LDO regulator is minimal. A low output voltage and low On-resistance LDO regulator is added in series to the DC/DC output so that one another low output voltage is created with a high efficiency and low noise. With comparison to the dual DC/DC solution, one inductor can be eliminated which results in parts reduction and board space saving.
APPLICATIONS
Mobile phones, Smart phones Bluetooth equipment Portable communication modems
FEATURES
Input Voltage Range : 2.7V ~ 6.0V Output Voltage Range : 0.8V ~ 4.0V High Efficiency : 92% (TYP.) Output Current : 600mA (MAX.) Oscillation Frequency : 1.2MHz, 3.0MHz (+15%) Maximum Duty Cycle : 100% Soft-Start Circuit Built-In Current Limiter Circuit (Constant Current & Latching) Built-In Control Methods : PWM (XCM519A) PWM/PFM Auto (XCM519B)
*Performance depends on external components and wiring on PCB wiring.
Portable game consoles
TYPICAL APPLICATION CIRCUIT
(TOP VIEW) * The dashed lines denote the connection through-holes at the backside of the PC board. using
TYPICAL PERFORMANCE CHARACTERISTICS
Dropout Voltage vs. Output Current
VR O UT= 1 .2 V Dropout Voltage: Vdif(mV) 300 250 200 150 100 50 0 0 100 200 300 400 Output Current: IOUT(mA) Ta=25
VBIAS=3.0V VBIAS=3.3V VBIAS=3.6V VBIAS=4.2V VBIAS=5.0V
Maximum Output Current : 400mA (Limiter 550mA TYP.) Dropout Voltage : 35mV@IOUT=100mA (TYP.) (at VBIAS - VROUT(E)=2.4V) Bias Voltage Range : 2.5V ~ 6.0V (VBIAS - VROUT(E)=0.9V) Input Voltage Range : 1.0V ~ 3.0V (VIN2 VBIAS) Output Voltage Range : 0.7V ~ 1.8V (0.05V increments) High Output Accuracy : 20mV Supply Current : IBIAS=25 A IIN2=1.0 A (TYP.) Stand-by Current : IBIAS=0.01 A , IIN2=0.01 A (TYP.) UVLO : VBIAS=2.0V , VIN2=0.4V (TYP) Thermal Shut Down : Detect 150 , Release 125 (TYP.) Soft-start Time : 240 s VROUT=1.2V(TYP.) CL High Speed Auto-Discharge Low ESR Capacitor Operating Temperature Range Package : Ceramic Capacitor Compatible : -40 ~ +85 : USP-12B01 VR 1.2V 1.5V 1.2V 1.0V 1.0V
Standard Voltage Combinations : DC/DC XCM519xx01Dx 1.8V XCM519xx02Dx 1.8V XCM519xx03Dx 1.5V XCM519xx04Dx 1.8V XCM519xx05Dx 1.5V
*Other combinations are available as semi-custom products.
1/49
XCM519 Series
PIN CONFIGURATIOIN
PIN No. 1 2 3 4 5 6 7 8 9 10 11 (TOP VIEW) 12 XCM519 DCOUT AGND EN1 VIN2 VSS2 VROUT EN2 NC VBIAS VIN1 PGND Lx XC9235/XC9236 VOUT AGND CE VIN PGND Lx XC6601 VIN VSS VOUT CE VBIAS
(BOTTOM VIEW) NOTE: * A dissipation pad on the reverse side of the package should be electrically isolated. *1: Electrical potential of the XC9235/XC9236's dissipation pad should be VSS level. *2: Electrical potential of the XC6601's dissipation pad should be VSS level. Care must be taken for an electrical potential of each dissipation pad so as to enhance mounting strength and heat release when the pad needs to be connected to the circuit.
PIN ASSIGNMENT
PIN No 1 2 3 4 5 6 7 8 9 10 11 12 XCM519 DCOUT AGND EN1 VIN2 VSS2 VROUT EN2 NC VBIAS VIN1 PGND Lx FUNCTIONS DC/DC Block: Output Voltage DC/DC Block: Analog Ground DC/DC Block: Chip Enable Voltage Regulator Block: Power Input Voltage Regulator Block: Ground Voltage Regulator Block: Output Voltage Regulator Block: Enable No Connection Voltage Regulator Block: Power Input DC/DC Block: Power Input DC/DC Block: Power Ground DC/DC Block: Switching
2/49
XCM519 Series
PRODUCT CLASSIFICATION
Ordering Information XCM519A XCM519B
DESIGNATOR
DC/DC BLOCK PWM fixed control DC/DC BLOCK PWM/PFM automatic switching control
DESCRIPTION SYMBOL See the chart below Internally set sequential number relating to output voltage (See the chart below) D R USP-12B01 Embossed tape, standard feed DESCRIPTION
Oscillation Frequency and Options Output Voltage Package Device Orientation
DESIGNATOR
DC/DC BLOCK OSCILLATION FREQUENCY A B C D 1.2M 3.0M 1.2M 3.0M CL AUTO DISCHARGE Not Available Not Available Available Available SOFT START Standard Standard High Speed High Speed Voltage Regulator BLOCK Pull-down Not Available Not Available Not Available Not Available
DESIGNATOR
DCOUT 01 02 03 04 05 1.8V 1.8V 1.5V 1.8V 1.5V VROUT 1.2V 1.5V 1.2V 1.0V 1.0V 3.0V.
*When the DCOUT pin is connected to VIN2, DCOUT pin output voltage can be fixed in the range of 1.0V
*This series are semi-custom products.
For other combinations of output voltages please consult with your Torex sales contact.
3/49
XCM519 Series
BLOCK DIAGRAMS
XC9235A/XC9236A
Phase Compensation
XC9235B/XC9236B
(CL Available with CL Discharge, High Speed Soft-Start
Phase Compensation
VOUT
R2
Current Feedback Current Limit
VOUT
R2
Current Feedback Current Limit
Error Amp.
PWM Comparator Logic Synch Buffer Drive
Error Amp.
PWM Comparator Logic Synch Buffer Drive
R1
Lx VIN
R1
VSHORT
Lx
VIN
VSHORT
Vref with Soft Start, CE
PWM/PFM Selector
Vref with Soft Start, CE
PWM/PFM Selector CE/ UVLO Cmp Ramp Wave Generator OSC
UVLO Cmp
VSS
UVLO R3
Ramp Wave Generator OSC
VSS CE
UVLO R3
R4
CE/MODE Control Logic
R4
CE/MODE Control Logic
XC6601B (Without Pull-down)
* XC9235 control scheme is a fixed PWM because that the "CE/MODE Control Logic" outputs a low level signal to the "PWM/PFM Selector". * XC9236 control scheme is an auto PWM/PFM switching because the "CE/MODE Control Logic" outputs a high level signal to the "PWM/PFM Selector". *Diodes inside the circuit are an ESD protection diode and a parasitic diode.
MAXIMUM ABSOLUTE RATINGS
PARAMETER VIN1Voltage Lx Voltage DCOUT Voltage EN1 Voltage Lx Current VBIAS Voltage VIN2 Voltage VROUT Current VROUT Voltage EN2 Voltage Power Dissipation (Ta=25 ) USP-12B01 SYMBOL VIN1 VLx VDCOUT VEN1 ILx VBIAS VIN2 IVROUT VROUT VEN2 Pd Tj Topr Tstg -55 - 0.3 RATINGS - 0.3 - 0.3 - 0.3 VSS - 0.3 VSS - 0.3 700 VSS - 0.3 VSS - 0.3 VSS - 0.3 150 125 -40 +85 +125
(*1)
Ta=25 UNITS V V V V mA 7.0 7.0 V V mA V V mW
6.5 6.5 6.5
VIN1 + 0.3 or 6.5
1500
VBIAS + 0.3 VIN2 + 0.3 6.5
Junction Temperature Operating Temperature Range Storage Temperature Range
(*1)
IVROUT=Less than Pd / (VIN2-VROUT)
4/49
XCM519 Series
ELECTRICAL CHARACTERISTICS
XCM519xA (DC/DC BLOCK)
PARAMETER Output Voltage Operating Voltage Range Maximum Output Current UVLO Voltage Supply Current Stand-by Current Oscillation Frequency PFM Switching Current PFM Duty Limit Maximum Duty Ratio Minimum Duty Ratio Efficiency
(*2)
VDCOUT=1.8V, fOSC=1.2MHz, Ta=25
CONDITIONS When connected to external components, VIN1 = VEN1 =5.0V, IOUT1 =30mA When connected to external components, (*8) VIN1=DCOUT(E)+2.0V, VEN1=1.0V VEN1=VIN1, DCOUT=0V, (*1, *10) Voltage which Lx pin holding "L" level VIN1=VEN1=5.0V, DCOUT=DCOUT(E)x1.1V (XCM519AA) (XCM519BA) MIN. 1.764 2.7 600 1.00 1020 120 100 900 0.65 VSS - 0.1 TYP. 1.800 1.40 22 15 0 1200 160 200 92 0.35 0.42 0.45 0.52 0.01 0.01 1050 100 MAX. 1.836 6.0 1.78 50 33 1.0 1380 200 0 0.55 0.67 0.66 0.77 1.0 1.0 1350 6.0 0.25 0.1 A kHz mA % % % % A A mA ppm/ V V A UNITS CIRCUIT V V mA V
SYMBOL VDCOUT VIN1 IOUT1MAX VUVLO IDD ISTB fOSC
VIN1=5.0V, VEN1=0V, DCOUT=DCOUT(E)x1.1V When connected to external components, (*11) VIN1=DCOUT(E)+2.0V,VEN1=1.0V, IOUT1=100mA When connected to external components, (*11) VIN1=VDCOUT(E)+2.0V, VEN1 =VIN1, IOUT1=1mA
DLIMIT_PFM DMAX DMIN EFFI RLXH RLXH RLXL RLXL ILEAKH ILEAKL ILIM DCOUT / (DCOUT VEN1H VEN1L IEN1H IEN1L topr)
VEN1=VIN1=(C-1), IOUT1=1mA
(*11)
VIN1= VEN1 =5.0V, DCOUT=DCOUT(E)x0.9V VIN1= VEN1 =5.0V, DCOUT=DCOUT(E)x1.1V When connected to external components, (*7) VEN1=VIN1 DCOUT(E)+1.2V , IOUT1 =100mA (*3) VIN1= VEN1 =5.0V, DCOUT=0V,ILX=100mA VIN1= VEN1 =3.6V, DCOUT=0V,ILX=100mA VIN1= VEN1 =5.0V VIN1= VEN1=3.6V
(*4) (*4) (*3)
Lx SW "H" ON Resistance 1 Lx SW "H" ON Resistance 2 Lx SW "L" ON Resistance 1 Lx SW "L" ON Resistance 2 Lx SW "H" Leak Current Lx SW "L" Leak Current Current Limit Output Voltage Temperature Characteristics
(*9) (*5) (*5)
VIN1= DCOUT=5.0V, VEN1 =0V, VLX=0V VIN1= DCOUT=5.0V, VEN1 =0V, VLX=5.0V VIN1=VEN1=5.0V, DCOUT=DCOUT(E)x0.9V IOUT1 =30mA -40 Topr 85 DCOUT=0V, Applied voltage to VEN, (*10) Voltage changes Lx to "H" level DCOUT=0V, Applied voltage to VEN, (*10) Voltage changes Lx to "L" level VIN1=VEN1=5.0V, DCOUT=0V
EN1 "H" Level Voltage EN1 "L" Level Voltage EN1 "H" Current EN1 "L" Current
VIN1=5.0V, VEN1 =0V, DCOUT=0V - 0.1 0.1 A When connected to external components, 0.5 1.0 2.5 ms Soft Start Time tSS VEN1 =0V VIN1, IOUT1=1mA VIN= VEN=5.0V, DCOUT=0.8x DCOUT(E) Latch Time tLAT 1.0 20.0 ms (*6) Short Lx at 1 resistance Sweeping DCOUT, VIN1=VEN1= 5.0V, Short Lx at Short Protection VSHORT 0.675 0.900 1.125 V 1 resistance, DCOUT voltage which Lx becomes Threshold Voltage "L" level within 1ms Test conditions: Unless otherwise stated, VIN = 5.0V, VDCOUT(E)= Setting voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage output current ) ( input voltage input current) } 100 *3: ON resistance ( )= (VIN - Lx pin measurement voltage) 100mA *4: Design value *5: When temperature is high, a current of approximately 10 A (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1 of resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT (E)+1.2V<2.7V, VIN=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H" VIN VIN - 1.2V, "L" + 0.1V - 0.1V *11: XCM519A series exclude IPFM and MAXIPFM because those are only for the PFM control's functions. * The electrical characteristics above are when the other channel is in stop mode.
5/49
XCM519 Series
ELECTRICAL CHARACTERISTICS (Continued)
XCM519xB 1ch (DC/DC BLOCK)
PARAMETER Output Voltage Operating Voltage Range Maximum Output Current UVLO Voltage Supply Current Stand-by Current Oscillation Frequency PFM Switching Current PFM Duty Limit Maximum Duty Ratio Minimum Duty Ratio Efficiency Lx SW "H" ON Resistance 1 Lx SW "H" ON Resistance 2 Lx SW "L" ON Resistance 1 Lx SW "L" ON Resistance 2 Lx SW "H" Leak Current Lx SW "L" Leak Current Current Limit Output Voltage Temperature Characteristics
(*9) (*5) (*5)
VDCOUT=1.8V, fOSC=3.0MHz, Ta=25
CONDITIONS When connected to external components, VIN1 = VEN1 =5.0V, IOUT1 =30mA When connected to external components, (*8) VIN1=VDCOUT(E)+2.0V, VEN1=1.0V VEN1=VIN1, DCOUT=0V, (*1, *10) Voltage which Lx pin holding "L" level VIN1=VEN1=5.0V, DCOUT= VIN1=5.0V, VEN1=0V, DCOUT= x1.1V (XCM519AB) (XCM519BB) x1.1V MIN. 1.764 2.7 600 1.00 2550 170 x0.9V x1.1V 100 900 0.65 VSS - 0.1 TYP. 1.800 1.40 46 21 0 3000 220 200 86 0.35 0.42 0.45 0.52 0.01 0.01 1050 100 MAX. 1.836 6.0 1.78 65 35 1.0 3450 270 300 0 0.55 0.67 0.66 0.77 1.0 1.0 1350 6.0 0.25 0.1 A kHz mA % % % % A A mA ppm/ V V A UNITS CIRCUIT V V mA V
SYMBOL VDCOUT VIN1 IOUT1MAX VUVLO IDD ISTB fOSC IPFM DLIMIT_PFM DMAX DMIN EFFI RLXH RLXH RLXL RLXL ILEAKH ILEAKL
When connected to external components, VIN1= +2.0V,VEN1=1.0V, IOUT1=100mA When connected to external components, (*11) VIN1= +2.0V, VEN1 =VIN1, IOUT1=1mA VEN1=VIN1=(C-1) IOUT1=1mA VIN1=VEN1 =5.0V, DCOUT= VIN1=VEN1 =5.0V, DCOUT=
(*11)
When connected to external components, VEN1=VIN1 +1.2V, IOUT1 =100mA (*3) VIN1= VEN1 =5.0V, DCOUT=0V,ILX=100mA VIN1= VEN1 =3.6V, DCOUT=0V,ILX=100mA VIN1= VEN1 =5.0V VIN1= VEN1=3.6V
(*4) (*4) (*3)
VIN1= DCOUT=5.0V, VEN1 =0V, VLX=0V VIN1= DCOUT=5.0V, VEN1 =0V, VLX=5.0V VIN1=VEN1=5.0V, DCOUT= IOUT1 =30mA -40 Topr 85 x0.9V
EN1 "H" Level Voltage EN1 "L" Level Voltage EN1 "H" Current EN1 "L" Current
VEN1H VEN1L IEN1H IEN1L
DCOUT=0V, Applied voltage to VEN, (*10) Voltage changes Lx to "H" level DCOUT=0V, Applied voltage to VEN, (*10) Voltage changes Lx to "L" level VIN1=VEN1=5.0V, DCOUT=0V
VIN1=5.0V, VEN1 =0V, DCOUT=0V - 0.1 0.1 A When connected to external components, 0.5 0.9 2.5 ms Soft Start Time tSS VEN1 =0V VIN1, IOUT1=1mA VIN1=VEN1=5.0V, DCOUT=0.8x Latch Time tLAT 1.0 20 ms (*6) Short Lx at 1 resistance Sweeping DCOUT, VIN1=VEN1=5.0V, Short Lx at Short Protection VSHORT 1 resistance, DCOUT voltage which Lx becomes 0.675 0.900 1.125 V Threshold Voltage "L" level within 1ms Test conditions: Unless otherwise stated, VIN1=5.0V, VDCOUT(E)= Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage output current ) ( input voltage input current) } 100 *3: ON resistance ( )= (VIN - Lx pin measurement voltage) 100mA *4: Design value *5: When temperature is high, a current of approximately 10 A (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1 of resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT (E)+1.2V<2.7V, VIN=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H" VIN VIN - 1.2V, "L" + 0.1V - 0.1V *11: XCM519A series exclude IPFM and DLIMIT_PFM because those are only for the PFM control's functions. * The electrical characteristics above are when the other channel is in stop mode.
6/49
XCM519 Series
ELECTRICAL CHARACTERISTICS (Continued)
XCM519xC 1ch (DC/DC BLOCK)
PARAMETER Output Voltage Operating Voltage Range Maximum Output Current Voltage Supply Current Stand-by Current Oscillation Frequency PFM Switching Current PFM Duty Limit Maximum Duty Ratio Minimum Duty Ratio Efficiency Lx SW "H" ON Resistance 1 Lx SW "H" ON Resistance 2 Lx SW "L" ON Resistance 1 Lx SW "L" ON Resistance 2 Lx SW "H" Leak Current Current Limit Output Voltage Temperature Characteristics
(*9) (*5)
VDCOUT=1.8V, fOSC=1.2MHz, Ta=25
CONDITIONS When connected to external components, VIN1=VEN1=5.0V,IOUT1=30mA When connected to external components, (*8) VIN1=DCOUT(E)V+2.0V,VEN1=1.0V VEN1=VIN1 DCOUT=0V, (*1, *10) Voltage which Lx pin holding "L" level VIN1=VEN1=5.0V,DCOUT=DCOUT(E)x1.1V VIN1=5.0V,VEN1=0V,DCOUT=DCOUT(E)x1.1V When connected to external components, VIN1=DCOUT(E)V+2.0V,VEN1=1.0V, IOUT1=100mA When connected to external components, (*11) VIN1=DCOUT(E)V+2.0V,VEN1=VIN1, IOUT1=1mA VEN1=VIN1=(C-1)IOUT1=1mA
(*11)
SYMBOL VDCOUT VIN1 IOUT1MAX VUVLO IDD ISTB fOSC IPFM DLIMIT_PFM DMAX DMIN EFFI RLXH RLXH RLXL RLXL ILEAKH ILIM DCOUT / (DCOUT VEN1H VEN1L IEN1H IEN1L tSS TLAT VSHORT RDCHG topr)
MIN. 1.764 2.7 600 1.00 1020 120 100 900 0.65 VSS - 0.1 - 0.1 1.0 0.675 200
TYP. 1.800 1.40 22 15 0 1200 160 200 92 0.35 0.42 0.45 0.52 0.01 1050 100 0.25 0.900 300
MAX. 1.836 6.0 1.78 50 33 1.0 1380 200
UNITS CIRCUIT V V mA V A A kHz mA %
VIN1=VEN1=5.0V,DCOUT=DCOUT(E)x0.9V VIN1=VEN1=5.0V,DCOUT=DCOUT(E)x1.1V When connected to external components, (*7) VEN1=VIN1 DCOUT(E)+1.2V , IOUT1=100mA (*3) VIN1=VEN1=5.0V,DCOUT=0V,ILX=100mA VIN1=VEN1=3.6V,DCOUT=0V,ILX=100mA VIN1=VEN1=5.0V VIN1=VEN1=3.6V
(*4) (*4) (*3)
0 0.55 0.67 0.66 0.77 1.0 1350 6.0 0.25 0.1 0.1 0.40 20 1.150 450
% % % A mA ppm/ V V A A ms ms V
VIN1=DCOUT=5.0V,VEN1=0V,LX=0V VIN1=VEN1=5.0V,DCOUT=DCOUT(E)x0.9V IOUT1=30mA, -40 Topr 85
EN1 "H" Level Voltage EN1 "L" Level Voltage EN1 "H" Current EN1 "L" Current Soft Start Time Latch Time Short Protection Threshold Voltage CL Discharge
DCOUT=0V, Applied voltage to VEN1, (*10) Voltage changes Lx to "H" level DCOUT=0V, Applied voltage to VEN1, (*10) Voltage changes Lx to "L" level VIN1=VEN1=5.0V,DCOUT=0V VIN1=5.0V,VEN1=0V,DCOUT=0V When connected to external components, VEN1=0VVIN1, IOUT1=1mA VIN1=VEN1=5.0V, DCOUT=0.8x (*6) Short Lx at 1 resistance Sweeping DCOUT, VIN1=VEN1=5.0V, Short Lx at 1 resistance, DCOUT voltage which Lx becomes "L" level within 1ms VIN1=5.0V, LX=5.0V,VEN1=0V, DCOUT=Open
Test conditions: Unless otherwise stated, VIN1=5.0V, VDCOUT(E)= Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage output current ) ( input voltage input current) } 100 *3: ON resistance ( )= (VIN - Lx pin measurement voltage) 100mA *4: Design value *5: When temperature is high, a current of approximately 10 A (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1 of resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT (E)+1.2V<2.7V, VIN=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H" VIN VIN - 1.2V, "L" + 0.1V - 0.1V *11: XCM519A series exclude IPFM and DLIMT_PFM because those are only for the PFM control's functions. * The electrical characteristics above are when the other channel is in stop mode.
7/49
XCM519 Series
ELECTRICAL CHARACTERISTICS (Continued)
XCM519xD 1ch (DC/DC BLOCK)
PARAMETER Output Voltage Operating Voltage Range Maximum Output Current Voltage Supply Current Stand-by Current Oscillation Frequency PFM Switching Current PFM Duty Limit Maximum Duty Ratio Minimum Duty Ratio Efficiency Lx SW "H" ON Resistance 1 Lx SW "H" ON Resistance 2 Lx SW "L" ON Resistance 1 Lx SW "L" ON Resistance 2 Lx SW "H" Leak Current Current Limit Output Voltage Temperature Characteristics
(*9) (*5)
DCOUT=1.8V, fOSC=3.0MHz, Ta=25
CONDITIONS When connected to external components, VIN1=VEN1=5.0V, IOUT1=30mA When connected to external components, (*8) VIN1=DCOUT(E)V+2.0V,VEN1=1.0V VEN1=VIN1 DCOUT=0V, (*1, *10) Voltage which Lx pin holding "L" level VIN1=VEN1=5.0V,DCOUT=DCOUT(E)x1.1V VIN1=5.0V,VEN1=0V, DCOUT=DCOUT(E)x1.1V When connected to external components, VIN1=DCOUT(E)V+2.0V, VEN1=1.0V, IOUT1=100mA When connected to external components, (*11) VIN1=DCOUT(E)V+2.0V, VEN1=VIN1, IOUT1=1mA VEN1=VIN1=(C-1)IOUT1=1mA
(*11)
SYMBOL VDCOUT VIN1 IOUT1MAX VUVLO IDD ISTB fOSC IPFM DLIMIT_PFM DMAX DMIN EFFI RLXH RLXH RLXL RLXL ILEAKH ILIM DCOUT / (DCOUT VEN1H VEN1L IEN1H IEN1L tSS tLAT VSHORT RDCHG topr)
MIN. 1.764 2.7 600 1.00 2550 170 100 900 0.65 VSS - 0.1 - 0.1 1.0 0.675 200
TYP. 1.800 1.40 46 21 0 3000 220 200 86 0.35 0.42 0.45 0.52 0.01 1050 100 0.32 0.900 300
MAX. 1.836 6.0 1.78 65 35 1.0 3450 270 300 0 0.55 0.67 0.66 0.77 1.0 1350 6.0 0.25 0.1 0.1 0.50 20 1.150 450
UNITS CIRCUIT V V mA V A A kHz mA % % % % A mA ppm/ V V A A ms ms V
VIN1=VEN1=5.0V, DCOUT=DCOUT(E)x0.9V VIN1=VEN1=5.0V, DCOUT=DCOUT(E)x1.1V When connected to external components, (*7) VEN1=VIN1 DCOUT(E)+1.2V ,IOUT1=100mA (*3) VIN1=VEN1=5.0V, DCOUT=0V, ILX=100mA VIN1=VEN1=3.6V, DCOUT=0V, ILX=100mA VIN1=VEN1=5.0V VIN1=VEN1=3.6V
(*4) (*4) (*3)
VIN1=DCOUT=5.0V,VEN1=0V, LX=0V VIN1=VEN1=5.0V, DCOUT=DCOUT(E)x0.9V IOUT1=30mA -40 Topr 85
EN1 "H" Level Voltage EN1 "L" Level Voltage EN1 "H" Current EN1 "L" Current Soft Start Time Latch Time Short Protection Threshold Voltage CL Discharge
DCOUT=0V, Applied voltage to VEN1, (*10) Voltage changes Lx to "H" level DCOUT=0V, Applied voltage to VEN1, (*10) Voltage changes Lx to "L" level VIN1=VEN1=5.0V, DCOUT=0V VIN1=5.0V,VEN1=0V, DCOUT=0V When connected to external components, VEN1=0VVIN1, IOUT1=1mA VIN1=VEN1=5.0V, DCOUT=0.8x (*6) Short Lx at 1 resistance Sweeping DCOUT, VIN1=VEN1=5.0V, Short Lx at 1 resistance, DCOUT voltage which Lx becomes "L" level within 1ms VIN1=5.0V, LX=5.0V, VEN1=0V, DCOUT=Open
Test conditions: Unless otherwise stated, VIN1=5.0V, VDCOUT(E)= Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage output current ) ( input voltage input current) } 100 *3: ON resistance ( )= (VIN - Lx pin measurement voltage) 100mA *4: Design value *5: When temperature is high, a current of approximately 10 A (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1 of resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT (E)+1.2V<2.7V, VIN=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H" VIN VIN - 1.2V, "L" + 0.1V - 0.1V *11: XCM519A series exclude IPFM and DLIMT_PFM because those are only for the PFM control's functions. * The electrical characteristics above are when the other channel is in stop mode.
8/49
XCM519 Series
ELECTRICAL CHARACTERISTICS (Continued)
PFM Switching Current (IPFM) by Oscillation Frequency and Output Voltage
1.2MHz SETTING VOLTAGE VDCOUT(E)1.2 1.2VVDCOUT(E)1.75 1.8VVDCOUT(E) 3.0MHz SETTING VOLTAGE VDCOUT(E)1.2 1.2VVDCOUT(E)1.75 1.8VVDCOUT(E) MIN. 190 180 170 TYP. 260 240 220 MIN. 140 130 120 TYP. 180 170 160 (mA) MAX. 240 220 200 (mA) MAX. 350 300 270
Measuring Maximum IPFM Limit, VIN Voltage
fOSC (C-1) 1.2MHz VDCOUT(E)+0.5V 3.0MHz VDCOUT(E)+1.0V
Minimum operating voltage is 2.7V ex.) Although when VDCOUT(E)=1.2V, fOSC=1.2MHz, (C-1)=1.7V the (C-1) becomes 2.7V because of the minimum operating voltage 2.7V.
Soft-Start Time Chart (XCM519xC/ XCM519xD Series Only)
PRODUCT SERIES fOSC 1200kHz XCM519AC 1200kHz 1200kHz 1200kHz XCM519BC 1200kHz 1200kHz XCM519xD 3000kHz 3000kHz OUTPUT VOLTAGE 0.8 1.5 1.8 2.5 0.8 2.5 0.8 1.8 VDCOUT(E)<1.5 VDCOUT(E)<1.8 VDCOUT(E)<2.5 VDCOUT(E)<4.0 VDCOUT(E)<2.5 VDCOUT(E)<4.0 VDCOUT(E)<1.8 VDCOUT(E)<4.0 MIN. TYP. 250 320 250 320 250 320 250 320 MAX. 400 500 400 500 400 500 400 500 s s s s s s s s
9/49
XCM519 Series
XCM519xx 2ch (REGULATOR BLOCK)
PARAMETER Bias Voltage Input Voltage
(*1) (*2)
ELECTRICAL CHARACTERISTICS (Continued)
SYMBOL VBIAS VIN2 VROUT(E)
(*3)
CONDITIONS VEN2 =VBIAS,VIN2=VROUT(T)+0.3V VBIAS=VEN2=3.6V VBIAS=VEN2=3.6V,VIN2=VROUT(T)+0.3V, IROUT=1mA VEN2 =VBIAS ,VBIAS -VROUT(T) VIN2 =VROUT(T)+0.5V VEN2 =VBIAS ,VBIAS -VROUT(T) VIN2 =VROUT(T)+0.5V VEN2 =VBIAS ,VBIAS -VROUT(T) VIN2 =VROUT(T)+0.5V VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V, 1mA IVROUT 100mA VEN2 =VBIAS , IOUT=100mA VEN2 =VBIAS , IOUT=200mA VEN2 =VBIAS , IOUT=300mA VEN2 =VBIAS , IOUT=400mA VBIAS=VEN2=3.6V,VIN2=VROUT(T)+0.3V VROUT(T)=OPEN VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V VROUT(T)=OPEN VROUT(T) 0.95V,VBIAS=VEN2=3.6V, 0.95V,VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.05V, VROUT=VROUT(T) - 0.05V VROUT(T) VIN2=1.0V, VROUT=VROUT(T) - 0.05V 1.5V 1.3V 1.2V
MIN. 2.5 1.0 -0.02
TYP. VOUT(T) E-0
(*4) (*5)
MAX. 6.0 3.0 +0.02
UNITS CIRCUIT V V V mA mA mA mV mV mV mV mV
Output Voltage Maximum Output Current1 Maximum Output Current2 Maximum Output Current3 Load Regulation Dropout Voltage1 Dropout Voltage2 Dropout Voltage3 Dropout Voltage4 Supply Current 1 Supply Current 2
IOUTMAX1 IOUTMAX2 IOUTMAX3 VROUT Vdif1 Vdif2 Vdif3 Vdif4
(*7) (*7) (*7) (*7)
200 300 400 -
8 E-1 E-2 E-3 E-4
(*6) (*6) (*6) (*6)
17
IBIAS IIN2
8 -
25 1.0
45 2.5
A A
Bias Current
(*10)
IBIASMAX
-
1.0
2.5
mA
Stand-by Current 1 Stand-by Current 2
IBIAS_STB IIN_STB
VBIAS=6.0V,VIN2=3.0V, VEN2=VSS2 VBIAS=6.0V,VIN2=3.0V, VEN2=VSS2 VROUT(T) VROUT(T)+1.2V 1.3V VBIAS 1.3V 6.0V, VIN2 3.0V, 6.0V,
-
0.01 0.01
0.10 0.35
A A
Bias Regulation
VROUT / ( VBIAS VROUT)
VIN2=VROUT(T)+0.3V, VEN2 =VBIAS , IOUT=1mA VROUT(T) 2.5V VROUT(T) VBIAS
-
0.01
0.3
%/V
VIN2=VROUT(T)+0.3V, VEN2 =VBIAS , IOUT=1mA 0.90V,VROUT(T)+0.1V 0.90V,1.0V VIN2 VROUT / ( VIN2 VROUT) VBIAS=VEN2=3.6V,IOUT=1mA VROUT(T) 3.0V VBIAS=VEN2=3.6V,IOUT=1mA Bias Voltage UVLO Input Voltage UVLO VBIAS Ripple Rejection VIN2 Ripple Rejection VBIAS_UVLO VIN_UVLO VBIAS_PSRR VIN_PSRR VEN2 =VBIAS,VIN2 =VROUT(T)+0.3V,IOUT=1mA VBIAS=VEN2=3.6V, IVROUT=1mA VBIAS=3.6VDC+0.2Vp-pAC,VIN2=VROUT(T)+0.3V, IOUT=30mA,f=1kHz VIN2=VOUT(T)+0.3VDC+0.2Vp-pAC, VBIAS=3.6V, IOUT=30mA,f=1kHz 1.37 0.07 2.0 0.4 40 60 2.5 0.6 V V dB dB
Input Regulation
-
0.01
0.1
%/V
10/49
XCM519 Series
XCM519xx 2ch (REGULATOR BLOCK) (Continued)
PARAMETER Output Voltage Temperature Characteristics Limit Current Short Current Thermal Shutdown Detect Temperature Thermal Shutdown Release Temperature TSD Hysteresis Width CL Auto-Discharge Resistance EN2 "H" Level Voltage EN2 "L" Level Voltage EN2 "H" Level Current EN2 "L" Level Current Soft Start Time
(*11)
ELECTRICAL CHARACTERISTICS (Continued)
SYMBOL CONDITIONS MIN. 400 VBIAS=3.6V, VIN2= VROUT(T)+0.3V, VEN2= VSS VROUT=VROUT(T) VBIAS=3.6V,VIN2=VROUT(T)+0.3V VBIAS=3.6V,VIN2=VROUT(T)+0.3V VBIAS=VEN2=6.0V, VIN2=VROUT(T)+0.3V VBIAS=6.0V, VEN2=VSS,VIN2=VROUT(T)+0.3V VBIAS=3.6V VIN2=VROUT(T)+0.3V VEN2=0V 3.6V IOUT=1mA 290 0.75 -0.1 -0.1 100 TYP. 100 80 150 125 25 430 MAX. 610 6.0 0.16 0.1 0.1 410 V V A A s UNITS CIRCUIT ppm/ mA mA
(
VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V , IOUT=30mA, VROUT/ - 40 Topr 85 Topr VROUT) ILIM ISHORT TTSD TTSR TTSD TTSR VROUT=VROUT(T) 0.95, VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V, VROUT=0V Junction Temperature Junction Temperature
RDCHG VEN2H VEN2L IEN2H IEN2L tSS
NOTE: * 1: Please use Bias voltage VBIAS within the range VBIAS -VROUT(T) 0.9V * 2: Please use Input voltage VIN within the range VIN VBIAS * 3: VROUT(E) : Effective output voltage * 4: VROUT(T) : Specified output voltage * 5: E-0 = Please refer to the table named OUTPUT VOLTAGE CHART * 6: E-1 = Please refer to the table named DROPOUT VOLTAGE CHART (*8) (*9) * 7: Vdif={VIN21 -VROUT1 } * 8: VIN21 : The input voltage when VOUT1 appears as input voltage is gradually decreased. * 9: VROUT1 : A voltage equal to 98% of the output voltage while maintaining an amply stabilized output voltage when VBIAS<3.0V at VIN2= VBIAS, VBIAS 3.0V at VIN2=VBIAS input to the VBIAS pin. *10 : IBIASMAX : A supply current at the VBIAS pin providing for the output current (IVROUT) . *11: tSS : Time that VROUT becomes more than VROUT(E) 0.9V after the EN2 pin is input 0.75V as EN2 "H" level voltage. * The electrical characteristics above are when the other channel is in stop mode.
OUTPUT VOLTAGE CHART
NOMINAL OUTPUT VOLTAGE (V) VROUT(T) 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 E-0 OUTPUT VOLTAGE (V) VROUT MIN. 0.680 0.730 0.780 0.830 0.880 0.930 0.980 1.030 1.080 1.130 1.180 1.230 MAX. 0.720 0.770 0.820 0.870 0.920 0.970 1.020 1.070 1.120 1.170 1.220 1.270 NOMINAL OUTPUT VOLTAGE (V) VROUT(T) 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 E-0 OUTPUT VOLTAGE (V) VROUT MIN. 1.280 1.330 1.380 1.430 1.480 1.530 1.580 1.630 1.680 1.730 1.780 MAX. 1.320 1.370 1.420 1.470 1.520 1.570 1.620 1.670 1.720 1.770 1.820
11/49
XCM519 Series
DROPOUT VOLTAGE CHART
E-1 NOMINAL OUTPUT VOLTAGE (V) Vgs VROUT(T) 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 DROPOUT VOLTAGE1 (mV) Vdif1 VBIAS =3.0(V)
(*1)
VBIAS =3.3(V) Vgs (V) 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 Vdif (mV) TYP. 35 36 MAX. 300 250 200 150 100 61
VBIAS =3.6(V) Vgs (V) 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 Vdif (mV) TYP. 33 34 MAX. 300 250 200 150 100 56 Vgs (V)
VBIAS =4.2(V) Vdif (mV) TYP. 30 31 MAX. 300 250 200 150 100 50 49 50 Vgs (V)
VBIAS =5.0(V) Vdif (mV) TYP. 27 28 MAX. 300 250 200 150 100 50 44 45
Vdif (mV) TYP. 40 41 MAX. 300 250 200 150 100 68
(V) 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 1.20
3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40
4.30 4.25 4.20 4.15 4.10 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.25 3.20
42
38
34
31
28
43
40
35
32
28
46
72
41
63
36
58
32
29
48
75
42
65
38
59
32
51
29
46
51
81
43
68
40
61
33
52
29
47
54
87
46
72
41
63
34
53
30
47
57 61 63 67 70 74 79
92 94 97 104 113 131 154
48
75
42
65
34
54
30
48
51
81
43
68
35
56
31
48
54
87
46
72
36
58
31
49
57
92
48
75
38
59
32
49
*1): Vgs is a Gate -Source voltage of the driver transistor that is defined as the value of VBIAS - VROUT (T).
12/49
XCM519 Series
DROPOUT VOLTAGE CHART (Continued)
E-2 NOMINAL OUTPUT VOLTAGE (V) Vgs VROUT(T) 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 DROPOUT VOLTAGE 2 (mV) Vdif2 VBIAS =3.0(V)
(*1)
VBIAS =3.3(V) Vgs (V) 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 Vdif (mV) TYP 74 76 MAX 300 250 200 150 117 123
VBIAS =3.6(V) Vgs (V) 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 Vdif (mV) TYP 68 70 MAX 300 250 200 150 110 111 Vgs (V)
VBIAS =4.2(V) Vdif (mV) TYP 62 63 MAX 300 250 200 150 100 98
VBIAS =5.0(V) Vgs (V) 4.30 4.25 4.20 4.15 4.10 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.25 3.20 Vdif (mV) TYP 57 58 MAX 300 250 200 150 100 88
Vdif (mV) TYP 81 85 MAX 300 250 200 150 131 139
(V) 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 1.20
3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40
88
78
72
63
58
90
81
74
64
58
96
146
85
127
76
114
65
101
59
90
101
154
88
131
78
117
67
103
59
91
108
170
90
139
81
123
68
106
60
92
115
179
96
146
85
127
70
108
61
93
122 129 135 145 154 165 175
192 197 206 223 248 293 353
101
154
88
131
72
110
62
94
108
170
90
139
74
111
63
95
115
179
96
146
76
114
63
97
122
192
101
154
78
117
64
98
*1): Vgs is a Gate -Source voltage of the driver transistor that is defined as the value of VBIAS - VROUT (T).
13/49
XCM519 Series
DROPOUT VOLTAGE CHART (Continued)
E-3 NOMINAL OUTPUT VOLTAGE (V) Vgs VVROUT(T) 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 DROPOUT VOLTAGE 3 (mV) Vdif3 VBIAS =3.0(V)
(*1)
VBIAS =3.3(V) Vgs (V) 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 Vdif(mV) TYP 115 117 MAX 300 250 200 181
VBIAS =3.6(V) Vgs (V) 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 Vdif(mV) TYP 107 109 MAX 300 250 200 167 Vgs (V)
VBIAS =4.2(V) Vdif(mV) TYP 95 96 MAX 300 250 200 150 148 151
VBIAS =5.0(V) Vgs (V) 4.30 4.25 4.20 4.15 4.10 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.25 3.20 Vdif(mV) TYP 89 90 MAX 300 250 200 150 132 134
Vdif(mV) TYP 130 134 MAX 300 250 200 204
(V) 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 1.20
3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40
138
119
111
97
90
145
216
130
190
115
170
98
91
153
227
134
197
117
176
101
153
92
137
161
239
138
204
119
181
105
155
93
139
173
264
145
216
130
190
107
159
93
140
184
289
153
227
134
197
109
163
94
141
196 209 222 239 256 -
313 323 344 388 442 -
161
239
138
204
111
167
95
142
173
264
145
216
115
170
96
145
184
289
153
227
117
176
97
148
196
313
161
239
119
181
98
151
*1): Vgs is a Gate -Source voltage of the driver transistor that is defined as the value of VBIAS - VROUT (T).
14/49
XCM519 Series
DROPOUT VOLTAGE CHART (Continued)
E-4 NOMINAL OUTPUT VOLTAGE (V) Vgs VVROUT(T) 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 DROPOUT VOLTAGE 4(mV) Vdif4 VBIAS =3.0(V)
(*1)
VBIAS =3.3(V) Vgs (V) 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 Vdif(mV) TYP 157 164 MAX 300 272
VBIAS =3.6(V) Vgs (V) 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 Vdif(mV) TYP 146 150 MAX 300 250 Vgs (V)
VBIAS =4.2(V) Vdif(mV) TYP 129 131 MAX 300 250 246 246
VBIAS =5.0(V) Vgs (V) 4.30 4.25 4.20 4.15 4.10 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.25 3.20 Vdif(mV) TYP 116 118 MAX 300 250 231 231
Vdif(mV) TYP 189 195 MAX 300 277
(V) 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 1.20
3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40
201
277
170
272
153
250
134
119
206
277
189
272
157
250
136
246
121
231
218
277 227 334 376
195
272 272 277 296
164
250 250 248 255
139
246 246 215 219
125
231 231 189 191
231
201
170
142
128
248
206
189
146
128
264
418
218
315
195
266
150
224
129
193
281
460
231
334
201
277
153
228
129
195
-
-
248
376
206
296
157
234
131
198
-
-
264
418
218
315
164
241
134
202
-
-
281
460
231
334
170
248
136
205
*1): Vgs is a Gate -Source voltage of the driver transistor that is defined as the value of VBIAS - VROUT (T).
15/49
XCM519 Series
TYPICAL APPLICATION CIRCUIT
L
DCOUT C L1
1 2 EN1 3 4
DCOUT AVSS EN1 VIN2 VSS2 VROUT
Lx
12
PVSS 11 VIN1 10 VBIAS
9
CIN1
VIN
CIN2
5
CBIAS
EN2
NC 8 EN2 7
VROUT
CL2
6
DC/DC BLOCK
L CIN1 CL1 CBIAS CIN2 CL2 : : : : : :
fOSC=3.0MHz
(NR3015 TAIIYO YUDEN) (Ceramic) (Ceramic) (Ceramic) (Ceramic) (Ceramic)
DC/DC BLOCK
L CIN1 CL1 CBIAS CIN2 CL2 : : : : : :
fOSC=1.2MHz
(NR4018 TAIIYO YUDEN) (Ceramic) (Ceramic) (Ceramic) (Ceramic) (Ceramic)
1.5 H 10 F 10 F 1F 1F 4.7 F
4.7 H 10 F 10 F 1F 1F 4.7 F
OPERATIONAL EXPLANATION
DC/DC BLOCK
The DC/DC block of the XCM519 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel MOSFET switching transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block diagram above.) The series ICs compare, using the error amplifier, the voltage of the internal voltage reference source with the feedback voltage from the DCOUT pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-channel MOS driver transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used ensuring stable output voltage. The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter. The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or 3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal circuits. The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage divided by the internal split resistors, R1 and R2. When a voltage is lower than the reference voltage is fed back, the output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed internally to deliver an optimized signal to the mixer.
16/49
XCM519 Series
OPERATIONAL EXPLANATION (Continued)
The current limiter circuit of the XCM519 series monitors the current flowing through the P-channel MOS driver transistor connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode. When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin at any given timing. When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state. At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over current state. When the over current state is eliminated, the IC resumes its normal operation. The IC waits for the over current state to end by repeating the steps through . If an over current state continues for a few ms and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the driver transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations can be resumed by either turning the IC off via the CE/MODE pin, or by restoring power to the VIN pin. The suspension mode does not mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in operation. The current limit of the XCM519 series can be set at 1050mA at typical. Besides, care must be taken when laying out the PC Board, in order to prevent miss-operation of the current limit mode. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible.
Limit
#ms
Limit
#ms
The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the DCOUT pin. In case where output is accidentally shorted to the Ground and when the FB point voltage decreases less than half of the reference voltage (Vref) and a current more than the ILIM flows to the driver transistor, the short-circuit protection quickly operates to turn off and to latch the driver transistor. In latch state, the operation can be resumed by either turning the IC off and on via the EN1 pin, or by restoring power supply to the VIN1 pin. When sharp load transient happens, a voltage drop at the DCOUT pin is propagated to FB point through CFB, as a result, short circuit protection may operate in the voltage higher than 1/2 VOUT voltage. When the VIN1 pin voltage becomes 1.4V or lower, the P-channel output driver transistor is forced OFF to prevent false pulse output caused by unstable operation of the internal circuitry. When the VIN1 pin voltage becomes 1.8V or higher, switching operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage. The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal circuitry remains in operation.
17/49
XCM519 Series
OPERATIONAL EXPLANATION (Continued)
In the PFM control operation, until coil current reaches to a specified level (DLIMIT_PFM), the IC keeps the P-ch MOSFET on. In this case, on-time (tON) that the P-ch MOSFET is kept on can be given by the following formula. tON= L IPFM (VIN1 VDCOUT) IPFM In the PFM control operation, the PFM duty limit (DLIMT_PFM) is set to 200% (TYP.). Therefore, under the condition that the duty increases (e.g. the condition that the step-down ratio is small), it's possible for P-ch MOSFET to be turned off even when coil current doesn't reach to IPFM. IPFM
Ton
FOSC
IPFM PFM Duty Limit
Lx
Lx
I Lx
IPFM 0mA
I Lx
IPFM 0mA
IPFM
IPFM
CL High Speed Discharge XCM519xC/ XCM519xD series can quickly discharge the electric charge at the output capacitor (CL) when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor located between the LX pin and the VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it may avoid application malfunction. Discharge time of the output capacitor (CL) is set by the CL auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value [R] and an output capacitor value (CL) as ( =C x R), discharge time of the output voltage after discharge via the N channel transistor is calculated by the following formula. V = VDCOUT(T) e -t / or t = Ln ( V / VDCOUT(T) )
V : Output voltage after discharge VDCOUT (T): Output voltage t: Discharge time :C R C= Capacitance of Output capacitor (CL) R= CL auto-discharge resistance
Output Voltage Dischage Characteristics Rdischg = 300 TYP
100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 CL=10uF CL=20uF CL=50uF
Discharge Time t (ms)
18/49
XCM519 Series
OPERATIONAL EXPLANATION (Continued)
Voltage Regulator BLOCK
The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The N-channel MOSFET which is connected to the VROUT pin is then driven by the subsequent output signal. The output voltage at the VROUT pin is controlled & stabilized by a system of negative feedback. VBIAS pin is power supply pin for output voltage control circuit, protection circuit and CE circuit. When output current increase, the VBIAS pin supplies output current also. VIN2 pin is connected to a driver transistor and provides output current. In order to obtain high efficient output current through low on-resistance, please take enough Vgs (=VBIAS - VROUT (T)) of the driver transistor. Output current triggers operation of constant current limiter and fold-back circuit, heat generation triggers operation of thermal shutdown circuit, the driver transistor circuit is forced OFF when VBIAS or VIN2 voltage goes lower than UVLO voltage. Further, the IC's internal circuitry can be shutdown via the EN2 pin's signal.
Figure 1: XC6601B Series
With the XCM519 series, a stable output voltage is achievable even if used with low ESR capacitors, as a phase compensation circuit is built-in. The output capacitor (CL2) should be connected as close to VROUT pin and VSS pin to obtain stable phase compensation. Values required for the phase compensation are as the table below. For a stable power input, please connect an bias capacitor (CBIAS ) of 1.0 F between the VBIAS pin and the VSS pin. Also, please connect an input capacitor (CIN2) of 1.0 F between the VIN2 pin and the VSS pin. In order to ensure the stable phase compensation while avoiding run-out of values, please use the capacitor (CBIAS, CIN2, CL2 ) which does not depend on bias or temperature too much. The table below shows recommended values of CBIAS, CIN, CL.
NOMINAL VOLTAGE 0.7V1.8V
BIAS CAPACITOR CBIAS CBIAS=1.0F
INPUT CAPACITOR CIN2 CIN2=1.0F
OUTPUT CAPACITOR CL2 CL2=4.7F
Recommended Values of CBIAS, CIN2, CL2
19/49
XCM519 Series
OPERATIONAL EXPLANATION (Continued)

With the XCM519, the inrush current from VIN2 to VROUT for charging CL at start-up can be reduced and makes the VIN2 stable. The soft-start time is optimized to 240 A (TYP.) at VROUT=1.2V internally. Soft-start time is defined as the VROUT reaches 90% of VROUT (E) from the time when CE H threshold 0.75V is input to the CE pin.
Figure2: Example of the inrush current wave form at IC start-up.
EN2 Input Voltage VEN2(V)
Inrush Current IRUSH (mA)
Figure3: Timing chart at IC start-up
XCM519 series can quickly discharge the electric charge at the output capacitor (CL) when a low signal to the EN2 pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor located between the VROUT pin and the VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it could avoids malfunction. At that time, CL discharge resistance is depended on a bias voltage. Discharge time of the output capacitor (CL) is set by the CL auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value [R] and an output capacitor value (CL) as ( =C x R), the output voltage after discharge via the N channel transistor is calculated by the following formulas.
V = VROUT(E)x e -t/ , or =lnVROUT(E) / V V : Output voltage after discharge, VROUT(E) : Output voltage, t: Discharge time, : CL auto-discharge resistance R Output capacitor (CL) value C
The XCM519 series' fold-back circuit operates as an output current limiter and a short protection of the output pin. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. When the output pin is shorted to the VSS level, current flows about 50mA.
When the junction temperature of the built-in driver transistor reaches the temperature limit level (150 TYP.), the thermal shutdown circuit operates and the driver transistor will be set to OFF. The IC resumes its operation when the thermal shutdown function is released and the IC's operation is automatically restored because the junction temperature drops to the level of the thermal shutdown release temperature (135 TYP.).
When the VBIAS pin voltage drops below 2.0V (TYP.) or VIN2 pin voltage drops below 0.4V (TYP.), the output driver transistor is forced OFF by UVLO function to prevent false output caused by unstable operation of the internal circuitry. When the VBIAS pin voltage rise at 2.2V (TYP.) or the VIN2 pin voltage rises at 0.4V (TYP.), the UVLO function is released. The driver transistor is turned in the ON state and start to operate voltage regulation.
20/49
XCM519 Series
OPERATIONAL EXPLANATION (Continued)
The IC internal circuitry can be shutdown via the signal from the EN2 pin with the XCM519 series. In shutdown mode, output at the VROUT pin will be pulled down to the VSS level via R1 & R2. However, as for the XCM519 series, the CL auto-discharge resistor is connected in parallel to R1 and R2 while the power supply is applied to the VIN2 pin. Therefore, time until the VROUT pin reaches the VSS level becomes short. The EN2 pin of XCM519 has pull-down circuitry so that EN2 input current increase during IC operation. The EN2 pin of XCM519 does not have pull-down circuitry so that logic is not fixed when the CE pin is open. If the EN2 pin voltage is taken from VBIAS pin or VSS pin then logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry when medium voltage is input.
NOTE ON USE
1. When the DC/DC converter and the VR are connected as VIN1=VBIAS, VDCOUT=VIN2, the following points should be noted. When the DC/DC load is changed drastically during a light load of the VR, a fluctuation may happen in tenths of mV. This value can be reduced by increasing CL1 load capacitance at the DC/DC in order to reduce a voltage drop during load transient.
1ch:DC/DC VOUT:50mV/div
1ch:DC/DC VOUT:50mV/div
2ch:VR VOUT:50mV/div
2ch:VR VOUT:50mV/div
4ch:VR IOUT:200mA/div 4ch:VR IOUT:200mA/div
20s/div
2.
50s/div
It is recommended that both CIN1 and CBIAS are connected to each pin separately. When one capacitor is used instead of the two, this capacitor should be placed in 10 F or more as close as the VIN1 and the PGND (AGND) pins of the DC/DC circuit. Please ensure it by testing on the actual product design. 3. It is recommended that both CL1 and CIN2 are connected to each pin separately. When one capacitor is used instead of the two, this capacitor should be selected in 4.7 F or bigger. Please ensure it by testing on the actual product design. 4. CL2 of the VR is recommended 4.7 A. When larger value is used in CL2, the larger value is also used in CL1 as in proportional. Please be noted that when CL2 capacitance of the VR is getting large, an inrush current increases at VR start-up, DC/DC short circuit protection starts to operate, as a result, the IC may happen to stop.
DCOUT(1V/div) IIN2(500mA/div) VROUT(1V/div) EN2(5V/div)
* VR inrush current IIN2 makes DC/DC short-circuit protection to start, as a result, the IC may happen to stop.
The left waver forms are taken at CL1=10 contrast to the recommended 4.7 However, it improves when CL1=20 F). F.
, CL2=10
F(in
50us/div
21/49
XCM519 Series
NOTE ON USE (Continued)
5. When the input-output voltage differential is small in the DC/DC converter and heavy load condition, a duty cycle is getting large and keeps the 100% duty cycle in a several period cycles. At the time of duty cycle transition to 100% or from 100%, noise may appear on the voltage regulator output. Please evaluate this on the actual design board when the condition is in small input-output voltage differential and heavy load. When the load is changed at the DC/DC converter, ringing may happen in some load conditions of DC/DC and VR at the timing of turn on and turn off. The ringing can be reduced by increasing CIN1 capacitance or placing a resistor over 10k between VIN1 and VBIAS pins. In order to turn off the input voltage, the EN2 pin should be turned off first. If the input voltage is turned off with keeping VR operation, the VROUT voltage goes up instantaneously as a result of the VR bias voltage transient.
6.
7.
VIN(5V/div) DCOUT(500mV/div)
VROUT(500mV/div)
200us/div
8. When the DCOUT pin is connected to the VIN2 pin and the bias voltage (VBIAS) is taken from the other power supply, EN1 and EN2 should be started up 10 s later than VBIAS. If EN1 and EN2 is turned on within 10 s, inrush current like 1A may happen which result in starting the DC/DC short-circuit protection.
9.
It is recommended to test this in the actual product design board.
1. The XCM519 series is designed for use with ceramic output capacitors. If, however, the potential difference is too large between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching energy and oscillation could occur on the output. If the input-output potential difference is large, connect an electrolytic capacitor in parallel to compensate for insufficient capacitance. 2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by external component selection, such as the coil inductance, capacitance values, and board layout of external components. Once the design has been completed, verification with actual components should be done. 3. As a result of input-output voltage and load conditions, oscillation frequency goes to 1/2, 1/3, and continues, then a ripple may increase. 4. When input-output voltage differential is large and light load conditions, a small duty cycle comes out. After that, 0%duty cycle may continue in several periods. 5. When input-output voltage differential is small and heavy load conditions, a large duty cycle comes out and may continues100% duty cycle in several periods. 6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate the peak current according to the following formula: Ipk = (VIN1-VDCOUT)x OnDuty /(2xLxfOSC) + IOUT L: Coil Inductance Value fOSC: Oscillation Frequency
22/49
XCM519 Series
NOTE ON USE (Continued)
7. When the peak current which exceeds limit current flows within the specified time, the built-in P-ch driver transistor turns off. During the time until it detects limit current and before the built-in transistor can be turned off, the current for limit current flows; therefore, care must be taken when selecting the rating for the external components such as a coil. 8. Care must be taken when laying out the PC Board, in order to prevent misoperation of the current limit mode. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible. 9. Use of the IC at voltages below the recommended voltage range may lead to instability. 10. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device. 11. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the leak current of the driver transistor. 12. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow. In case that the current limit functions while the DCOUT pin is shorted to the GND pin, when P-ch MOSFET is ON, the potential difference for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By contrast, when N-ch MOSFET is ON, there is almost no potential difference at both ends of the coil since the DCOUT pin is shorted to the GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of this operation, and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the amount of current, which is supposed to be limited originally. Even in this case, however, after the over current state continues for several ms, the circuit will be latched. A coil should be used within the stated absolute maximum rating in order to prevent damage to the device. Current flows into P-ch MOSFET to reach the current limit (ILIM). The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to OFF of P-ch MOSFET. Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small. Lx oscillates very narrow pulses by the current limit for several ms. The circuit is latched, stopping its operation.
Delay LX ILIM ILX Limit > mS ms
13. 14. 15.
In order to stabilize VIN1's voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the VIN1 & VSS pins. High step-down ratio and very light load may lead an intermittent oscillation. During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode. Please verify with actual parts.

23/49
XCM519 Series
NOTE ON USE (Continued)
16. Please note the inductance value of the coil. The IC may enter unstable operation if the combination of ambient temperature, setting voltage, oscillation frequency, and L value are not adequate. In the operation range close to the maximum duty cycle, The IC may happen to enter unstable output voltage operation even if using the L values listed below.
The Range of L Value

fOSC 3.0MHz 1.2MHz 0.8V
VOUT VOUT<4.0V 2.5V VOUT 1.0 3.3 4.7 VOUT 2.5V
L Value H H H 2.2 6.8 6.8 H H H
*When a coil less value of 4.7 H is used at fOSC=1.2MHz or when a coil less value of 1.5H is used at fOSC=3.0MHz, peak coil current more easily reach the current limit ILMI. In this case, it may happen that the IC can not provide 600mA output current. 1. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please keep the resistance low between VBIAS, VIN2 and VSS wiring in particular. 2. Please wire the bias capacitor (CBIAS), input capacitor (CIN2) and the output capacitor (CL2) as close to the IC as possible. 3. Capacitance values of these capacitors (CBIAS, CIN2, CL2) are decreased by the influences of bias voltage and ambient temperature. Care shall be taken for capacitor selection to ensure stability of phase compensation from the point of ESR influence. 4. In case of the output capacitor more than CL=22 F is used, ringing of input current occurs when rising time. 5. VIN2 and EN2 should be applied at least 10 s after the bias voltage VBIAS reaches the requested voltage. If VIN2 and EN2 are applied within 10 s, inrush current like 1A may occurs.
Instructions of pattern layouts
Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded. 2. In order to stabilize VIN1 VIN2 VBIAS DCOUT VROUT voltage level, we recommend that a by-pass capacitor (CIN1 CIN2 CBIAS CL1 CL2) be connected as close as possible to the VIN1 VIN2 VBIAS DCOUT VROUT and GND VSS pins. 3. Please mount each external component as close to the IC as possible. 4. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance. 5. VSS AGND PGND VSS ground wiring is recommended to get large area. The IC may goes into unstable operation as a result of VSS voltage level fluctuation during the switching. 6. This series' internal driver transistors bring on heat because of the output current (IOUT) and ON resistance of driver transistors. 1.
L AGND
L
EN1 CL1
PGND
DCOUT
Lx
Ceramic Capacitor
VIN2
CIN3
IC
CIN1
VBIAS
VIN1
CL2 VSS VROUT EN2
Front
CIN2
Inductor
Back
24/49
XCM519 Series
TEST CIRCUITS
< Circuit No.1 >
Wave Form Measure Point
< Circuit No.2 >
VIN1 EN1 Lx DCOUT
CL L
A
CIN
A V
1uF
VIN1 EN1
Lx DCOUT
AGND
PGND
AGND
PGND
VBIAS VIN2 EN2
VROUT
VBIAS VIN2 EN2
VROUT
External Components L : 1.5H(NR3015) 3.0MHz 4.7H(NR4018) 1.2MHz
CIN : 4.7F(ceramic) CL :10F(ceramic)
< Circuit No.3 >
Wave Form Measure Point
< Circuit No.4 >
VIN1 EN1 Lx DCOUT
Rpulldown 200
VIN1 EN1
1F
Lx DCOUT
1F
V
100mA
AGND
PGND
AGND
PGND
VBIAS VIN2 EN2
VROUT
VBIAS VIN2 EN2
VROUT
< Circuit No.5 >
ILeakH
< Circuit No.6 >
VIN1
ICEH
Lx DCOUT
A
Wave Form Measure Point
VIN1
ILeakL
Lx DCOUT
1F
A
ICEL
EN1
EN1
1F
V
ILIM
AGND
PGND
AGND
PGND
VBIAS VIN2 EN2
VROUT
VBIAS VIN2 EN2
VROUT
< Circuit No.7 >
Wave Form Measure Point
< Circuit No.8 >
ILx
VIN1 EN1
1uF
Lx
Ilat
VIN1 EN1
Rpulldown 1 1uF
Lx DCOUT
A
DCOUT
AGND
PGND
AGND
PGND
VBIAS VIN2 EN2
VROUT
VBIAS VIN2 EN2
VROUT
< Circuit No.9 >
A
CIN
VIN1 EN1
Lx DCOUT
AGND
PGND
VBIAS VIN2 EN2
VROUT
25/49
XCM519 Series
TEST CIRCUITS (Continued)
< Circuit No.10 >
VIN1 EN1 Lx DCOUT
AGND
PGND
A A V
SW1
VBIAS VIN2
VROUT
A
CL2 4.7uF
SW2
A V
CIN2 1.0uF CBIAS 1.0uF
EN2 VSS
V
V
< Circuit No.11 >
VIN1 EN1
Lx DCOUT
AGND
PGND
SW1
VBIAS
SW2
VROUT
A
CL2 4.7uF
VIN2 EN2
V
V
VSS
CIN2 SW3 1.0uF CBIAS SW4 1.0uF
V
RL
< Circuit No.12 >
VIN1 EN1
Lx DCOUT Waveform measure
AGND
PGND
VBIAS Waveform measure VIN2 EN2 VSS
1.0uF CBIAS 1.0uF
VROUT
A
CL2 4.7uF
V
V
V
RL
V
CIN2
* For the timing chart, please refer to on page 20.
26/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS
1ch:DC/DC Block
(1) Efficiency vs. Output Current DCOUT=1.8V,1.2MHz
L=4.7 H(NR4018), CIN1=10 F, CL1=10 F
DCOUT=1.8V,3.0MHz
L=1.5 H(NR3015), CIN1=10 F, CL1=10 F
100 90 80 Efficency:EFFI(%)
PWM/PFM Automatic Sw itching Control
100 90 80 Efficency:EFFI(%)
PWM/PFM Automatic Sw itching Control
70 60 50 40 30 20 10 0 0.1
VIN= 4.2V 3.6V PWM Control VIN= 4.2V 3.6V
70 60 50 40 30 20 10 0
VIN= 4.2V 3.6V PWM Control VIN= 4.2V 3.6V
1
10
100
1000
0.1
1
10
100
1000
Output Current:IOUT(mA)
Output Current:IOUT(mA)
(2) Output Voltage vs. Output Current DCOUT=1.8V,1.2MHz
L=4.7 H(NR4018), CIN1=10 F, CL1=10 F
DCOUT=1.8V,3.0MHz
L=1.5 H(NR3015), CIN1=10 F, CL1=10 F
2.1 2.0 Output Voltage:Vout(V) 1.9 1.8 1.7 PWM Control 1.6 1.5 0.1 1 10 100 1000 Output Current:IOUT(mA) PWM/PFM Automatic Sw itching Control VIN4.2V,3.6V Output Voltage:Vout(V)
2.1 2.0 1.9 1.8 1.7 1.6 1.5 0.1 1 10 100 1000 Output Current:IOUT(mA) PWM/PFM Automatic Sw itching Control VIN4.2V,3.6V
PWM Control
(3) Ripple Voltage vs. Output Current DCOUT=1.8V,1.2MHz
L=4.7 H(NR4018), CIN1=10 F, CL1=10 F
DCOUT=1.8V,3.0MHz
L=1.5 H(NR3015), CIN1=10 F, CL1=10 F
100
100
80 Ripple Voltage:Vr(mV) Ripple Voltage:Vr(mV)
80
60 PWM Control VIN4.2V,3.6V
40
PWM/PFM Automatic Sw itching Control VIN4.2V 3.6V
60
PWM Control VIN4.2V,3.6V
40
PWM/PFM Automatic Sw itching Control VIN4.2V 3.6V
20
20
0 0.1 1 10 100 1000 Output Current:IOUT(mA)
0 0.1 1 10 100 1000 Output Current:IOUT(mA)
27/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Oscillation Frequency vs. Ambient Temperature DCOUT=1.8V,1.2MHz
L=4.7 H(NR4018), CIN1=10 F, CL1=10 F
DCOUT=1.8V,3.0MHz
L=1.5 H(NR3015), CIN1=10 F, CL1=10 F
1.5 Oscillation Frequency : FOSC(MHz) Oscillation Frequency : FOSC(MHz) 1.4 1.3 1.2 1.1 1.0 0.9 0.8 -50 -25 0 25 50 75 100 VIN=3.6V
3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 -50 -25 0 25 50 75 100 Ambient Temperature: Ta () Ambient Temperature: Ta () VIN=3.6V
(5) Supply Current vs. Ambient Temperature DCOUT=1.8V,1.2MHz
40 35 Supply Current : IDD (A) 30 25 20 15 10 5 0 -50 VIN=4.0V Supply Current : IDD (A) VIN=6.0V 40 35 30 25 20 15 10 5 0 -50
DCOUT=1.8V,3.0MHz
VIN=6.0V VIN=4.0V
-25
0
25
50
75
100
-25
0
25
50
75
100
Ambient Temperature: Ta ( )
Ambient Temperature: Ta ()
(6) Output Voltage vs. Ambient Temperature DCOUT=1.8V,3.0MHz
2.1 2.0 1.9 1.8 1.7 1.6 1.5 -50 -25 0 25 50 75 100 Ambient Temperature: Ta ()
(7) UVLO Voltage vs. Ambient Temperature DCOUT=1.8V,3.0MHz
1.8 1.5 UVLO Voltage : UVLO (V) 1.2 0.9 0.6 0.3 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta ()
EN=VIN EN=VIN CE=VIN
Output Voltage : VOUT (V)
VIN=3.6V
28/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(8) EN "H" Voltage vs. Ambient Temperature DCOUT=1.8V,3.0MHz
1.0 CE "H" Voltage : VCEH (V) 0.9 CE "L" Voltage : VCEL (V) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta ( ) VIN=3.6V VIN=5.0V
(9)EN" L" Voltage vs. Ambient Temperature DCOUT=1.8V,3.0MHz
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta () VIN=3.6V VIN=5.0V
(10) Soft Start Time vs. Ambient Temperature
DCOUT=1.8V,3.0MHz
L=4.7 H(NR4018), CIN1=10 F, CL1=10 F
DCOUT=1.8V,3.0MHz
L=1.5 H(NR3015), CIN1=10 F, CL1=10 F
5
5
Soft Start Time : TSS (ms)
3
Soft Start Time : TSS (ms)
4
4
3
2
VIN=3.6V
2
VIN=3.6V
1
1
0 -50
-25
0
25
50
75
100
0 -50
-25
0
25
50
75
100
Ambient Temperature: Ta ()
Ambient Temperature: Ta ()
(11) "Pch / Nch" Driver on Resistance vs. Input Voltage
DCOUT=1.8V,3.0MHz
Lx SW ON Resistance:RLxH,RLxL () 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 Input Voltage : VIN (V) Pch on Resistance Nch on Resistance
29/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12) XCM519xC/ XCM519xD Rise Wave Form DCOUT=1.2V,1.2MHz
L=4.7 H (NR4018), CIN1=10 F, CL1=10 F
DCOUT=3.3V,3.0MHz
L=1.5 H (NR3015), CIN1=10 F, CL1=10 F
VIN1=5.0V IOUT=1.0mA
VIN1=5.0V IOUT=1.0mA
VOUT
0.5V/div
VOUT
1.0V/div
EN
0.0V 1.0V
EN
0.0V 1.0V
100 s/div
100 s/div
(13) XCM519xC/ XCM519xD Soft-Start Time vs. Ambient Temperature DCOUT=1.2V,1.2MHz
L=4.7 H(NR4018), CIN1=10 F, CL1=10 F
DCOUT=3.3V,3.0MHz
L=1.5 H(NR3015), CIN1=10 F, CL1=10 F
500
500
Soft Start Time :TSS (s)
Soft Start Time :TSS (s)
400
400
300
300
200 VIN=5.0V IOUT=1.0mA
200 VIN=5.0V IOUT=1.0mA
100
100
0 -50 -25 0 25 50 75 100
0 -50 -25 0 25 50 75 100
Ambient Temperature: Ta()
Ambient Temperature: Ta()
(14) XCM519xC/ XCM519xD CL Discharge Resistance vs. Ambient Temperature DCOUT=3.3V,3.0MHz
600 VIN=6.0V VIN=4.0V 400
CL Discharge Resistance: ( )
500
300
200
100 -50
-25
0
25
50
75
100
Ambient Temperature: Ta ()
30/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response DCOUT=1.2V,1.2MHz(PWM/PFM Automatic Switching Control) L=4.7 H(NR4018), CIN1=10 VIN1=3.6V, EN1=VIN1
IOUT=1mA 100mA IOUT =1mA 300mA
F(ceramic), CL1=10 F(ceramic), Topr=25
1ch : IOUT
1ch : IOUT
2ch VOUT : 50mV/div
2ch VOUT : 50mV/div
50
s/div
50
s/div
IOUT=100mA
1mA
IOUT=300mA
1mA
1ch : IOUT
1ch : IOUT
2ch VOUT: 50mV/div 200 s/div
2ch VOUT: 50mV/div 200 s/div
31/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued) DCOUT=1.2V,1.2MHz(PWM Control) L=4.7 H(NR4018), CIN1=10 VIN1=3.6V, EN1=VIN1
IOUT=1mA 100mA IOUT=1mA 300mA
F(ceramic), CL1=10 F(ceramic), Topr=25
1ch: IOUT
1ch: IOUT
2ch VOUT : 50mV/div
2ch VOUT: 50mV/div
50
s/div
50
s/div
IOUT=100mA
1mA
IOUT=300mA
1mA
1ch: IOUT
1ch: IOUT
2ch VOUT : 50mV/div
2ch VOUT : 50mV/div
200
s/div
200
s/div
32/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued) DCOUTT=1.8V,3.0MHz(PWM/PFM Automatic Switching Control) L=1.5 H(NR3015), CIN1=10 VIN1=3.6V, EN=VIN1
IOUT=1mA 100mA IOUT=1mA 300mA
F(ceramic), CL1=10 F(ceramic),Topr=25
1ch : IOUT
1ch : IOUT
2ch VOUT : 50mV/div
2ch VOUT : 50mV/div
50
s/div
50
s/div
IOUT=100mA
1mA
IOUT=300mA
1mA
1ch : IOUT
1ch : IOUT
2ch VOUT : 50mV/div
2ch VOUT : 50mV/div
200
s/div
200
s/div
33/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued) DCOUT=1.8V,3.0MHz(PWM Control) L=1.5 H(NR3015), CIN1=10 VIN1=3.6V, EN1=VIN1
IOUT=1mA 100mA IOUT=1mA 300mA
F(ceramic), CL1=10 F(ceramic), Topr=25
1ch : IOUT
1ch : IOUT
2ch VOUT : 50mV/div
2ch VOUT : 50mV/div
50
s/div
50
s/div
IOUT=100mA
1mA
IOUT=300mA
1mA
1ch : IOUT
1ch : IOUT
2ch VOUT : 50mV/div
2ch VOUT : 50mV/div
200
s/div
200
s/div
34/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
2ch:Regulator Block
(1) Output Voltage vs. Output Current
VROUT=0.7V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =1.0V
VROUT=0.7V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, Ta=25
0.8 Output Voltage: VROUT(V) 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 Output Current: IOUT(mA)
Ta=-40 Ta=25 Ta=85
0.8 Output Voltage: VROUT(V) 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 Output Current: IOUT(mA) 700
VIN2=1.0V VIN2=1.2V VIN2=1.5V
VROUT=1.2V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =1.5V
VROUT=1.2V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, Ta=25
1.4 Output Voltage: VROUT(V) Output Voltage: VROUT(V) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 Output Current: IOUT(mA)
Ta=-40 Ta=25 Ta=85
1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 Output Current: IOUT(mA)
VIN2=1.3V VIN2=1.5V VIN2=1.8V
VROUT=1.8V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =2.1V
VROUT=1.8V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, Ta=25
2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100
Ta=-40 Ta=25 Ta=85
2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 100
Output Voltage: VROUT(V)
Output Voltage: VROUT(V)
VIN2=1.9V VIN2=2.1V VIN2=2.3V
200 300 400 500 600 Output Current: IOUT(mA)
700
200 300 400 500 600 Output Current: IOUT(mA)
700
35/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
2 Output Voltage vs. Bias Voltage
VROUT=0.7V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VIN2 =1.0V, Ta=25
VROUT=0.7V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VIN2 =1.0V, Ta=25
0.9 Output Voltage: VROUT(V) 0.8 0.7 0.6 0.5 1.7 1.9 2.1 2.3 2.5 Bias Voltage: VBIAS(V)
IOUT=30mA IOUT=100mA
0.9 Output Voltage: VROUT(V)
IOUT=0mA IOUT=0mA
0.8
IOUT=30mA IOUT=100mA
0.7 0.6 0.5 2.5 3 3.5 4 4.5 5 5.5 6 Bias Voltage: VBIAS(V)
VROUT=1.2V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VIN2 =1.5V, Ta=25
VROUT=1.2V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VIN2 =1.5V, Ta=25
1.4 Output Voltage: VROUT(V)
IOUT=0mA
1.4 Output Voltage: VROUT(V)
IOUT=0mA IOUT=30mA IOUT=100mA IOUT=30mA IOUT=100mA
1.3
1.3 1.2
1.2 1.1
1.1
1.0 1.7 1.9 2.1 2.3 2.5 Bias Voltage: VBIAS(V)
1.0 2.5 3 3.5 4 4.5 5 5.5 6 Bias Voltage: VBIAS(V)
VROUT=1.8V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VIN2 =2.1V, Ta=25
VROUT=1.8V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VIN2 =2.1V, Ta=25
2.0 Output Voltage: VROUT(V)
IOUT=30mA IOUT=100mA
2.0 Output Voltage: VROUT(V)
IOUT=0mA IOUT=0mA IOUT=30mA IOUT=100mA
1.9
1.9
1.8
1.8
1.7
1.7
1.6 1.8 2 2.2 2.4 2.6 2.8 3 Bias Voltage: VBIAS(V)
1.6 3 3.5 4 4.5 5 5.5 6 Bias Voltage: VBIAS(V)
36/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(3) Output Voltage vs. Input Voltage
VROUT=0.7V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, Ta=25
VROUT=0.7V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, Ta=25
0.9 Output Voltage: VROUT(V)
IOUT=30mA
0.9 Output Voltage: VROUT(V)
IOUT=0mA IOUT=0mA
0.8 0.7 0.6 0.5 0.5 0.6 0.7
IOUT=100mA
0.8
IOUT=30mA IOUT=100mA
0.7 0.6 0.5
0.8
0.9
1
1.2 1.4 1.6 1.8
2
2.2 2.4 2.6 2.8
3
Bias Voltage: VBIAS(V)
Bias Voltage: VBIAS(V)
VROUT=1.2V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, Ta=25
VROUT=1.2V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, Ta=25
1.4 Output Voltage: VROUT(V)
IOUT=0mA
1.4 Output Voltage: VROUT(V)
IOUT=0mA IOUT=30mA IOUT=100mA
1.3
1.3
IOUT=30mA IOUT=100mA
1.2 1.1
1.2 1.1
1.0 1 1.1 1.2 1.3 1.4 Bias Voltage: VBIAS(V)
1.0 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 Bias Voltage: VBIAS(V)
VROUT=1.8V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, Ta=25
VROUT=1.8V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, Ta=25
2.0 Output Voltage: VROUT(V)
IOUT=30mA IOUT=100mA
2.0 Output Voltage: VROUT(V)
IOUT=0mA IOUT=0mA IOUT=30mA IOUT=100mA
1.9
1.9
1.8
1.8
1.7
1.7
1.6 1.6 1.7 1.8 1.9 2 Bias Voltage: VBIAS(V)
1.6 2 2.2 2.4 2.6 2.8 3 Bias Voltage: VBIAS(V)
37/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
4Dropout Voltage vs. Output Current
VROUT=1.2V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) Ta=25
VROUT=1.2V (Vgs
(*1)
=2.4V)
VBIAS=3.6V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic)
300 Dropout Voltage: Vdif(mV) 250 200 150 100 50 0 0 100 200 300 Output Current: IOUT(mA) 400
VBIAS=3.0V VBIAS=3.3V VBIAS=3.6V VBIAS=4.2V VBIAS=5.0V
400 Dropout Voltage: Vdif(mV)
Ta=-40
300 200 100 0 0
Ta=25 Ta=85
100 200 300 Output Current: IOUT(mA)
400
VROUT=1.2V (Vgs(*1)=1.8V)
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.0V
VROUT=1.2V (Vgs(*1)=3.0V)
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=4.2V
400 Dropout Voltage: Vdif(mV)
Ta=-40
400 Dropout Voltage: Vdif(mV)
Ta=-40 Ta=25 Ta=85
300 200 100 0 0
300 200 100 0
Ta=25 Ta=85
100 200 300 Output Current: IOUT(mA)
400
0
100 200 300 Output Current: IOUT(mA)
400
VROUT=1.2V (Vgs(*1)=2.1V)
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.3V
VROUT=1.2V (Vgs(*1)=3.8V)
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=5.0V
400 Dropout Voltage: Vdif(mV)
Ta=-40
400 Dropout Voltage: Vdif(mV)
Ta=-40
300 200 100 0 0
Ta=25 Ta=85
300 200 100 0
Ta=25 Ta=85
100 200 300 Output Current: IOUT(mA)
400
0
100 200 300 Output Current: IOUT(mA)
400
*1): Vgs is a Gate -Source voltage of the driver transistor that is defined as the value of VBIAS - VOUT(T). A value of the dropout voltage is determined by the value of the Vgs.
38/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(5) Supply Bias Current vs. Bias Voltage
VROUT=0.7V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VIN2 =1.0V
(6) Supply Input Current vs. Input Voltage
VROUT=0.7V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V
Supply Bias Current: IBIAS(A)
Supply Input Current: IIN(A)
40 30 20 10 0 0 1 2 3 4 5 6 Bias Voltage: VBIAS(V)
Ta=-40 Ta=25 Ta=85
2.0
Ta=-40
1.5 1.0 0.5 0.0 0 0.5 1 1.5 2
Ta=25 Ta=85
2.5
3
Input Voltage: VIN(V)
VROUT=1.2V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VIN2 =1.5V
VROUT=1.2V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V
Supply Bias Current: IBIAS(A)
Supply Input Current: IIN(A)
40 30 20
Ta=-40
3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 0.5 1 1.5 2 2.5 3
Ta=-40 Ta=25 Ta=85
10 0 0 1 2 3 4
Ta=25 Ta=85
5
6
Bias Voltage: VBIAS(V)
Input Voltage: VIN(V)
VROUT=1.8V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic)
VROUT=1.8V
VIN2 =2.1V CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V
Supply Bias Current: IBIAS(A)
Supply Input Current: IIN(A)
40 30 20 10 0 0 1 2 3 4 5
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 0.5 1 1.5 2
Ta=-40 Ta=25 Ta=85
Ta=-40 Ta=25 Ta=85
6
2.5
3
Bias Voltage: VBIAS(V)
Input Voltage: VIN(V)
39/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(7) Output Voltage vs. Ambient Temperature
VROUT=0.7V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =1.0V
(8) Supply Bias Current vs. Ambient Temperature
VROUT=0.7V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =1.0V
0.72 0.71 0.70 0.69 0.68 0.67 -50 -25 0 25 50 75 100 Ambient Temperature: Ta()
IOUT=1mA IOUT=30mA IOUT=100mA
Supply Bias Current: IBIAS(A)
0.73 Output Voltage: VROUT(V)
40 35 30 25 20 15 -50 -25 0 25 50 75 100 Ambient Temperature: Ta()
VROUT=1.2V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =1.5V
VROUT=1.2V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =1.5V
1.22 1.21 1.20 1.19 1.18 1.17 -50 -25 0 25 50 75 100
IOUT=1mA IOUT=30mA IOUT=100mA
Supply Bias Current: IBIAS(A)
1.23 Output Voltage: VROUT(V)
40 35 30 25 20 15 -50 -25 0 25 50 75 100 Ambient Temperature: Ta()
Ambient Temperature: Ta()
VROUT=1.8V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =2.1V
VROUT=1.8V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =2.1V
1.83 1.82 1.81 1.80 1.79 1.78 1.77 -50 -25 0 25 50 75 100 Ambient Temperature: Ta()
IOUT=1mA IOUT=30mA IOUT=100mA
Supply Bias Current: IBIAS(A)
40 35 30 25 20 15 -50 -25 0 25 50 75 100 Ambient Temperature: Ta()
40/49
Output Voltage: VROUT(V)
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(9) Supply Input Current vs. Ambient Temperature
VROUT=0.7V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =1.0V
Supply Input Current: IIN(A)
2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta()
VROUT=1.2V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =1.5V
Supply Input Current: IIN(A)
2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta()
VROUT=1.8V
CIN2 =CBIAS=1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =2.1V
Supply Input Current: IIN(A)
2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta()
41/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10) Bias Transient Response
C IN2=1.0F(ceramic), C BIAS=0F(ceramic), CL2=4.7F(ceramic) 1.1 VIN2=1.0V, IOUT=30mA, tr=tf=5.0sec, Ta=25 5 Bias Voltage 1.0 4 1.0 1.1
VROUT =0.7V
C IN2=1.0F(ceramic), C BIAS=0F(ceramic), CL2=4.7F(ceramic) VIN2=1.0V, IOUT=200mA, tr=tf=5.0sec, Ta=25 5 Bias Voltage 4
VROUT =0.7V
Output Voltage VR OUT(V)
Bias Voltage V BIAS(V)
0.8
2
0.8
2
0.7 Output Voltage
1
0.7 Output Voltage
1
0.6
0
0.6
0
0.5 Time (40usec/div)
-1
0.5 Time (40usec/div)
-1
1.6
C IN2=1.0F(ceramic), C BIAS=0F(ceramic), CL2=4.7F(ceramic) VIN2=1.5V, IOUT=30mA, tr=tf=5.0sec, Ta=25 5 Bias Voltage
VROUT =1.2V
C IN2=1.0F(ceramic), C BIAS=0F(ceramic), CL2=4.7F(ceramic) 1.6 VIN2=1.5V, IOUT=200mA, tr=tf=5.0sec, Ta=25 5 Bias Voltage
VROUT =1.2V
1.5
4
1.5
4
Output Voltage VR OUT(V)
Bias Voltage V BIAS(V)
1.3
2
1.3
2
1.2
1
1.2 Output Voltage
1
1.1
Output Voltage
0
1.1
0
1.0 Time (40usec/div)
-1
1.0 Time (40usec/div)
-1
C IN2=1.0F(ceramic), C BIAS=0F(ceramic), CL2=4.7F(ceramic) 2.2 VIN2=2.1V, IOUT=30mA, tr=tf=5.0sec, Ta=25 5 Bias Voltage 2.1 4 2.0 2.1
VROUT =1.8V
C IN2=1.0F(ceramic), C BIAS=0F(ceramic), CL2=4.7F(ceramic) VIN2=2.1V, IOUT=200mA, tr=tf=5.0sec, Ta=25 5 Bias Voltage 4
VROUT =1.8V
Output Voltage VR OUT(V)
Bias Voltage V BIAS(V)
1.9
2
1.8
2
1.8 Output Voltage
1
1.7 Output Voltage
1
1.7
0
1.6
0
1.6 Time (40usec/div)
-1
1.5 Time (40usec/div)
-1
42/49
Bias Voltage V BIAS(V)
2.0
3
Output Voltage VR OUT(V)
1.9
3
Bias Voltage V BIAS(V)
1.4
3
Output Voltage VR OUT(V)
1.4
3
Bias Voltage V BIAS(V)
0.9
3
Output Voltage VR OUT(V)
0.9
3
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(11) Input Transient Response
CIN2=0.1F(ceramic), CBIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, IOUT=30mA, tr=tf=5.0sec, Ta=25 1.1 Input Voltage 1.0 2 1.0 3 1.1
VROUT =0.7V
CIN2 =0.1F(ceramic), C BIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, IOUT=200mA, tr=tf=5.0sec, Ta=25 3 Input Voltage 2
VROUT =0.7V
Output Voltage VR OUT(V)
Input Voltage V IN2(V)
0.8
0
0.8
0
0.7 Output Voltage 0.6
-1
0.7 Output Voltage
-1
-2
0.6
-2
0.5 Time (20usec/div)div) Time (20 s /
-3
0.5 Time (20usec/div) Time (20 s / div)
-3
1.6
CIN2=0.1F(ceramic), CBIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, IOUT=30mA, tr=tf=5.0sec, Ta=25 4 Input Voltage
VROUT =1.2V
1.6
CIN2 =0.1F(ceramic), C BIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, IOUT=200mA, tr=tf=5.0sec, Ta=25 4 Input Voltage
VROUT =1.2V
1.5
3
1.5
3
Output Voltage VR OUT(V)
Input Voltage V IN2(V)
1.3
1
1.3
1
1.2 Output Voltage 1.1
0
1.2
0
-1
1.1
Output Voltage
-1
1.0 Time (20usec/div)div) Time (20 s /
-2
1.0 Time (20usec/div) Time (20 s / div)
-2
2.2
CIN2=0.1F(ceramic), CBIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, IOUT=30mA, tr=tf=5.0sec, Ta=25 5 Input Voltage
VROUT =1.8V
CIN2 =0.1F(ceramic), C BIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, IOUT=200mA, tr=tf=5.0sec, Ta=25 2.2 Input Voltage 5
VROUT =1.8V
2.1
4
2.1
4
Output Voltage VR OUT(V)
1.9
2
1.9
2
1.8
1
1.8 Output Voltage
1
1.7
Output Voltage
0
1.7
0
1.6
Time (20usec/div)
Time (20
s / div)
-1
1.6
Time (20
Time (20usec/div)
s / div)
-1
Input Voltage V IN2(V)
Input Voltage V IN (V)
2.0
3
Output Voltage VR OUT(V)
2.0
3
Input Voltage V IN2(V)
1.4
2
Output Voltage VR OUT(V)
1.4
2
Input Voltage V IN2(V)
0.9
1
Output Voltage VR OUT(V)
0.9
1
43/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12) Load Transient Response
VROUT =0.7V
0.9 CIN2=CBIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, VIN2=1.0V, tr=tf=5.0sec, Ta=25 Output Voltage 0.7 Output Voltage VR OUT(V) 400 Output Voltage VR OUT(V) Output Current IOUT(mA) 0.7 500 0.9 Output Voltage 400 Output Current IOUT(mA) Output Current IOUT(mA) Output Current IOUT(mA)
VROUT =0.7V
CIN2=CBIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, VIN2=1.0V, tr=tf=5.0sec, Ta=25 500
0.5
300
0.5
300
0.3 Output Current 0.1 100mA 10mA -0.1
200
0.3 Output Current 0.1
200mA
200
100
100 10mA
0
-0.1
0
TimeTime (45usec/div) (45 s / div)
Time (45 s / div) Time (45usec/div)
CIN2=CBIAS=1.0F(ceramic), C L2=4.7F(ceramic) VBIAS=3.6V, VIN2=1.5V, tr=tf=5.0sec, Ta=25 1.4 Output Voltage 1.2 Output Voltage VR OUT(V) 400 Output Voltage VR OUT(V) Output Current IOUT(mA) 1.2 500 1.4
VROUT =1.2V
CIN2=CBIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, VIN2=1.5V, tr=tf=5.0sec, Ta=25 500 Output Voltage 400
VROUT =1.2V
1.0
300
1.0
300
0.8 Output Current 0.6 100mA
200
0.8 Output Current 0.6
200mA
200
100
100 10mA
10mA 0.4
Time (45
s / div)
0
0.4
Time (45
Time (45usec/div)
Time (45usec/div)
s / div)
0
CIN2=CBIAS=1.0F(ceramic), C L2=4.7F(ceramic) VBIAS=3.6V, VIN2=2.1V, tr=tf=5.0sec, Ta=25 2.0 Output Voltage 1.8 Output Voltage VR OUT(V) 400 Output Voltage VR OUT(V) Output Current IOUT(mA) 1.8 500 2.0
VROUT =1.8V
VROUT =1.8V
CIN2=CBIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, VIN2=2.1V, tr=tf=5.0sec, Ta=25 500 Output Voltage 400
1.6
300
1.6
300
1.4 Output Current 1.2 100mA 10mA 1.0 Time (45usec/div)
200
1.4 Output Current 1.2
200mA
200
100
100 10mA
0
1.0 Time (45usec/div)
0
44/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(13) CE Rising Response Time
VROUT =0.7V VROUT =0.7V
3.0
CIN2=CBIAS=1.0F(ceramic), CL2=4.7F(ceramic) VIN2=1.0V, VBIAS=3.6V, IOUT=30mA, tr=tf=5.0sec, Ta=25 4
3.0
CIN2=C BIAS=1.0F(ceramic), CL2=4.7F(ceramic) VIN2=1.0V, VBIAS=3.6V, IOUT=200mA, tr=tf=5.0sec, Ta=25 4
2.5 EN2 Input Voltage
3 EN2 Input Voltage V EN2(V)
2.5 EN2 Input Voltage
3 EN2 Input Voltage V EN2(V) EN2 Input Voltage V EN2 (V) EN2 Input Voltage V EN2(V)
Output Voltage VR OUT(V)
2.0
2
Output Voltage VR OUT(V)
2.0
2
1.5
1
1.5
1
1.0
Output Voltage
0
1.0
Output Voltage
0
0.5
-1
0.5
-1
0.0 Time (100usec/div)
-2
0.0 Time (100usec/div)
-2
Time (100
s / div)
Time (100
s / div)
3.0
CIN2=CBIAS=1.0F(ceramic), CL2=4.7F(ceramic) VIN2=1.5V, VBIAS=3.6V, IOUT=30mA, tr=tf=5.0sec, Ta=25 4
VROUT =1.2V
3.0
CIN2=C BIAS=1.0F(ceramic), CL2=4.7F(ceramic) VIN2=1.5V, VBIAS=3.6V, IOUT=200mA, tr=tf=5.0sec, Ta=25 4
VROUT =1.2V
2.5 EN2 Input Voltage
3 EN2 Input Voltage V EN2(V)
2.5 EN2 Input Voltage
3
Output Voltage VR OUT(V)
2.0
2
Output Voltage VR OUT(V)
2.0
2
1.5
Output Voltage
1
1.5
Output Voltage
1
1.0
0
1.0
0
0.5
-1
0.5
-1
0.0
-2
0.0
-2
Time (100
Time (100usec/div)
s / div)
Time (100
Time (100usec/div)
s / div)
3.0
CIN2=CBIAS=1.0F(ceramic), CL2=4.7F(ceramic) VIN2=2.1V, VBIAS=3.6V, IOUT=30mA, tr=tf=5.0sec, Ta=25 4
VROUT =1.8V
3.0
CIN2=C BIAS=1.0F(ceramic), CL2=4.7F(ceramic) VIN2=2.1V, VBIAS=3.6V, IOUT=200mA, tr=tf=5.0sec, Ta=25 4
VROUT =1.8V
2.5 EN2 Input Voltage
3
2.5
EN2 Input Voltage
3
EN2 Input Voltage V CE(V)
Output Voltage VR OUT(V)
2.0
2
Output Voltage VR OUT(V)
2.0
2
1.5
1
1.5
1
1.0 Output Voltage
0
1.0 Output Voltage
0
0.5
-1
0.5
-1
0.0
-2
0.0
-2
Time (100 s / div) Time (100usec/div)
Time (100 s / div) Time (100usec/div)
45/49
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(14) VIN Rising Response Time
CIN2=0.1F(ceramic), CBIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, IOUT=30mA, tr=tf=5.0sec, Ta=25 3
VROUT =0.7V
2.5
2.5
CIN2 =0.1F(ceramic), C BIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, IOUT=200mA, tr=tf=5.0sec, Ta=25 3
VROUT =0.7V
2.0 Input Voltage Output Voltage VR OUT(V)
2 Output Voltage VR OUT(V)
2.0
Input Voltage
2
Input Voltage V IN (V)
1.5
1
1.5
1
1.0
Output Voltage
0
1.0
Output Voltage
0
0.5
-1
0.5
-1
0.0 Time (100usec/div)
-2
0.0 Time (100usec/div)
-2
CIN2=0.1F(ceramic), CBIAS=1.0F(ceramic), CL2=4.7F(ceramic) 2.5 VBIAS=3.6V, IOUT=30mA, tr=tf=5.0sec, Ta=25 3 2.5
VROUT =1.2V
CIN2 =0.1F(ceramic), C BIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, IOUT=200mA, tr=tf=5.0sec, Ta=25 3
VROUT =1.2V
Input Voltage 2.0 Output Voltage VR OUT(V) 2 Output Voltage VR OUT(V) 2.0
Input Voltage
2
Input Voltage V IN (V)
1.5 Output Voltage
1
1.5 Output Voltage
1
1.0
0
1.0
0
0.5
-1
0.5
-1
0.0 Time (100usec/div)
-2
0.0 Time (100usec/div)
-2
2.5
OUT CIN2=0.1F(ceramic), CBIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, IOUT=30mA, tr=tf=5.0sec, Ta=25 3
VR
=1.8V
2.5
OUT CIN2 =0.1F(ceramic), C BIAS=1.0F(ceramic), CL2=4.7F(ceramic) VBIAS=3.6V, IOUT=200mA, tr=tf=5.0sec, Ta=25 3
VR
=1.8V
Input Voltage 2.0 Output Voltage VR OUT(V) 2 Output Voltage VR OUT(V) 2.0
Input Voltage 2
Input Voltage V IN (V)
1.5
1
1.5
1
1.0
0
1.0
0
0.5
Output Voltage
-1
0.5
Output Voltage
-1
0.0 Time (100usec/div)
-2
0.0 Time (100usec/div)
-2
46/49
Input Voltage V IN (V)
Input Voltage V IN (V)
Input Voltage V IN (V)
XCM519 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Bias Voltage Ripple Rejection Rate
VROUT=0.7V
CBIAS=0F, CIN2 =1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6VDC+0.2Vp-pAC, VIN2 =1.0V, IOUT=30mA, Ta=25
(16) Input Voltage Ripple Rejection Rate
VROUT=0.7V
CBIAS=1.0F(ceramic), CIN2 =0F, CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =1.0VDC+0.2Vp-pAC, IOUT=30mA, Ta=25
80 70 VBIAS_PSRR(dB) 60 50 40 30 20 10 0 0.01 0.1 1 10 100 1000 10000
80 70 60 VIN_PSRR(dB) 50 40 30 20 10 0 0.01 0.1 1 10 100 1000 10000
Frequency (kHz)
Frequency (kHz)
VROUT=1.2V
CBIAS=0F, CIN2 =1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6VDC+0.2Vp-pAC, VIN2 =1.5V, IOUT=30mA, Ta=25
VROUT=1.2V
CBIAS=1.0F(ceramic), CIN2 =0F, CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =1.5VDC+0.2Vp-pAC, IOUT=30mA, Ta=25
80 70 60 VBIAS_PSRR(dB) 50 40 30 20 10 0 0.01 0.1 1 10 100 1000 10000
80 70 60 VIN_PSRR(dB) 50 40 30 20 10 0 0.01
0.1
1
10
100
1000 10000
Frequency (kHz)
Frequency (kHz)
VROUT=1.8V
CBIAS=0F, CIN2 =1.0F(ceramic), CL2 =4.7F(ceramic) VBIAS=3.6VDC+0.2Vp-pAC, VIN2 =2.1V, IOUT=30mA, Ta=25
VROUT=1.8V
CBIAS=1.0F(ceramic), CIN2 =0F, CL2 =4.7F(ceramic) VBIAS=3.6V, VIN2 =2.1VDC+0.2Vp-pAC, IOUT=30mA, Ta=25
80 70 VBIAS_PSRR(dB) 60 50 40 30 20 10 0 0.01 0.1 1 10 100 1000 10000
80 70 VIN_PSRR(dB) 60 50 40 30 20 10 0 0.01 0.1 1 10 100 1000 10000
Frequency (kHz)
Frequency (kHz)
47/49
XCM519 Series
PACKAGING INFORMATION
USP-12B01
2 .80 .08
2 .30 .08
1234 567 8
MAX 0 . 6
(0 .4 ) (0 .4 ) (0 .4 ) (0 .4 ) (0 .4 )
(0 .25 ) (0 .15 )
0 .25 .05 0 0 .2 .05 0 0 .2 .05 0 0 .2 .05 0 0 .2 .05 0 0 .2 .05 0 0 .250 .1
1
2
3
4
5
6
1 .30 .1
0 .40 .1
* Au plate thickness: Minimum 0.3
Au m in0 .3u m
m
0 .250 .1
12 11 10 9
1 .20 .1
0 .70 .05
8
7
*The side of pins is not plated, nickel is exposed.
Au 1
20/1
1 .20 .1
0 .70 .05
*Pin #1 is wider than other pins.
mm
UNIT: mm
USP-12B01 Reference Pattern Layout
USP-12B01 Reference Metal Mask Design
0 .45
1 .35 1 .35 0 .90 0 .90 0 .45 0 .65 0 .65 0 .25 0 .25
0 .35
1 .30 1 .30 0 .95 0 .95 0 .55 0 .55 0 .25 0 .25
0 .35
1 .05 0 .95 0 .65 0 .55 0 .25 0 .15 0 .25 0 .30 0 .025 0 .025 0 .025 0 .025
1 .05 0 .95 0 .65 0 .55 0 .25 0 .15 0 .05 0 .15 0 .05 0 .05 0 .20 0 .05
1 .30 1 .60
0 .10 0 .10
0 .20
0 .50
0 .20
1 .30 1 .60
0 .15
0 .40
0 .15
48/49
0 .60 1 .10 1 .55
0 .60 1 .10 1 .55
XCM519 Series
1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this datasheet within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.
49/49


▲Up To Search▲   

 
Price & Availability of XCM519AB02DR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X